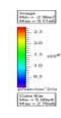
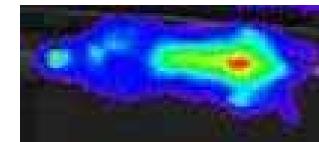
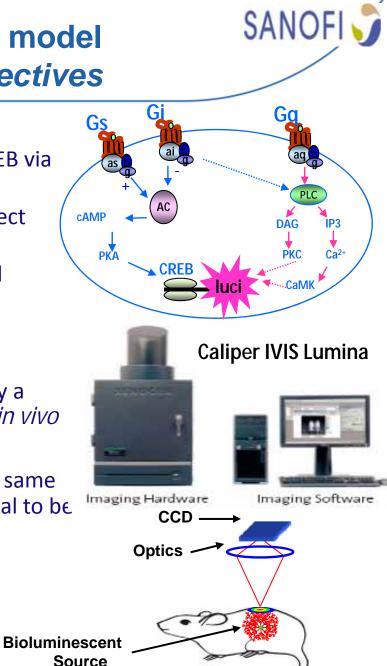


The CRE Luc Reporter Mouse Model A transgenic bioimaging mouse model to assay ligand activation of GPCRs

Greg Polites Immuno-Inflammation TSU, Sanofi Pharmaceuticals Inc. Bridgewater, NJ Keystone Symposia: G Protein-Coupled Receptors February 20, 2012

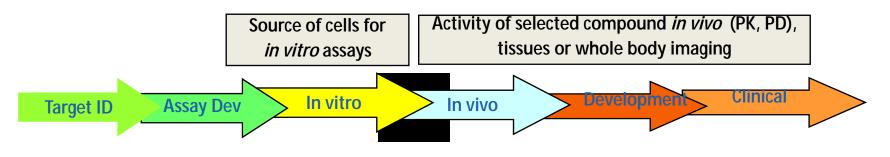

The CRE Luc mouse model background and objectives


CRE-luciferase reporter system


- CRE promoter is responsive to the activation of CREB via the cAMP or PLC pathway
- Luciferase reporter expression is modulated to reflect
 GPCR activity through a transcriptional readout
- Assay can be used for all 3 GPCR classes: Gs ,Gi and indirectly Gq

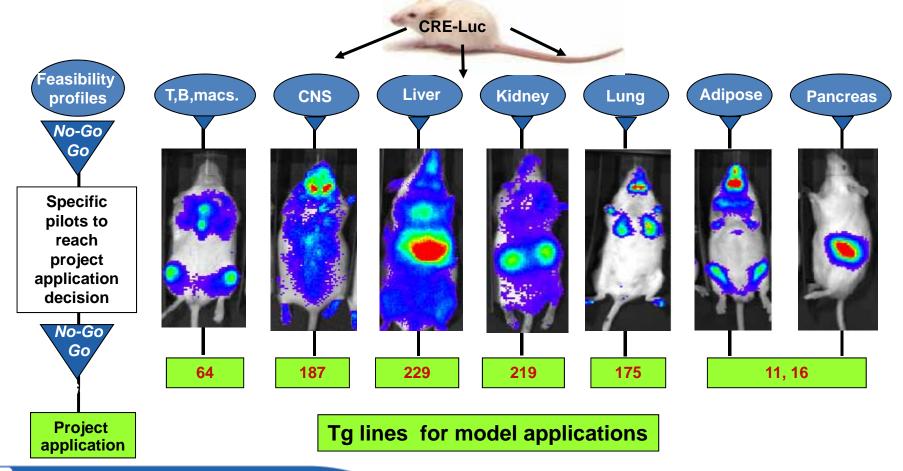
Bioimaging

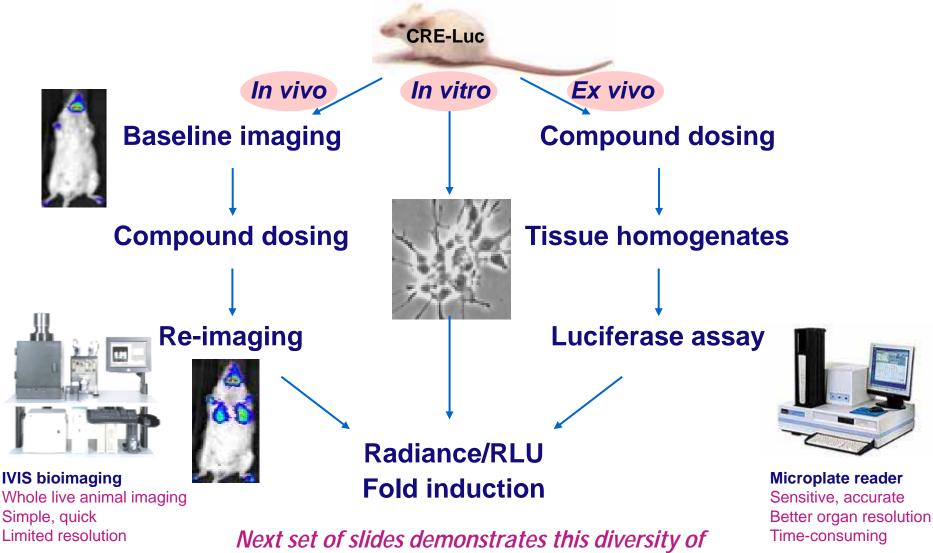
- Real-time *in vivo* imaging utilizes the light emitted by a bioluminescent reporter gene (luciferase) expressed *in vivo*
- Allows for quantification of the signal non-invasively
- Temporal and spatial data can be collected from the same animal which reduces variation and allows each animal to be its own control



The CRE Luc mouse model background and objectives

SANOFI


- Model goal: Combine a GPCR reporter system with real-time *in vivo* bioimaging to assay GPCR ligand receptor interactions in primary cells, tissues or live animals.
 - Same reporter system utilized for both *in vitro* and *in vivo* assays
 - Profiling of compounds selected from *in vitro* assays for rapid PK/PD
 - CRE Luc mouse models support rapid application to ligand:receptor pharmacological assays *in vitro*
 - GPCR ligand interactions can be assayed in a native system avoiding difficult to transfect primary cells and engineered cell lines
- Model application: The CRE Luc model has broad applications to GPCR ligand and receptor interactions.
 - Addresses the transition from cells to animal model profiling of leads in GPCR drug development

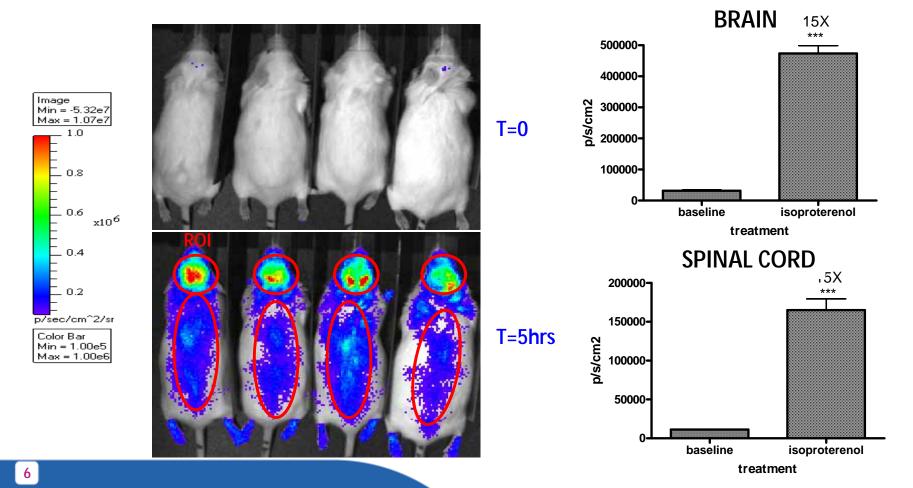

CRE Luc Reporter Mouse Model Application Strategy

SANOFI 🎝

- Starting with a variety of luciferase expression profiles, pilot studies defined the model's potential impact on drug development projects.
 - Typical pilots started with CRE Luc primary cell responses followed by in vivo experiments

Studying the GPCR cAMP SANOFI

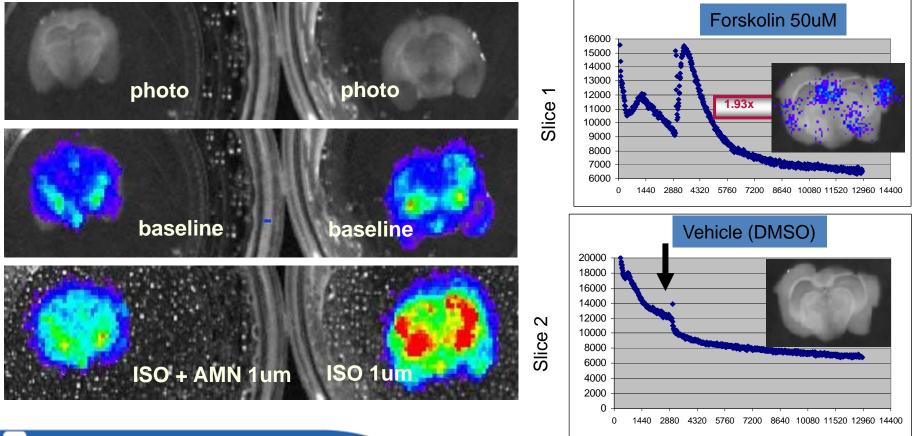
5

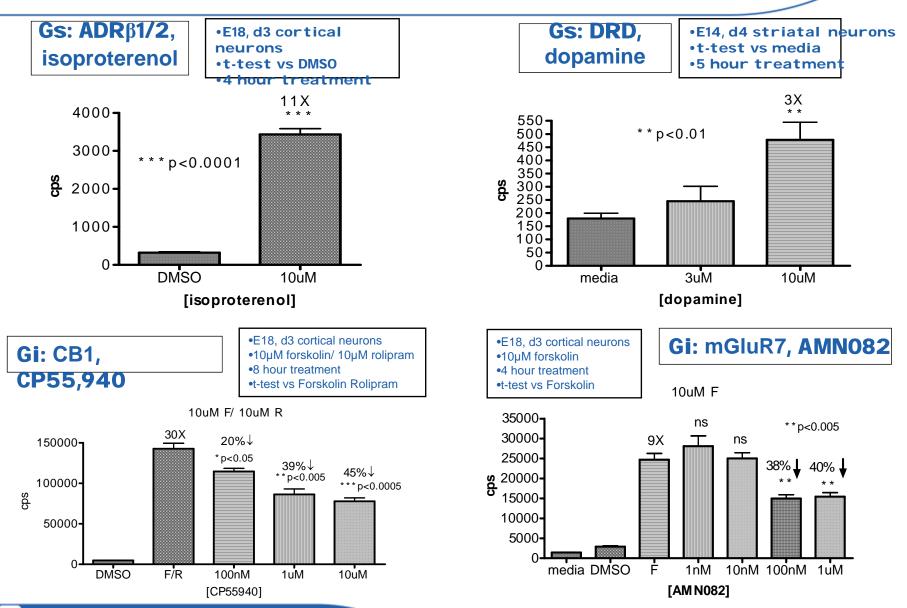

Next set of slides demonstrates this diversity of data with isoproterenol

Isoproterenol *in vivo* response in CRE Luc

SANOFI 🎝

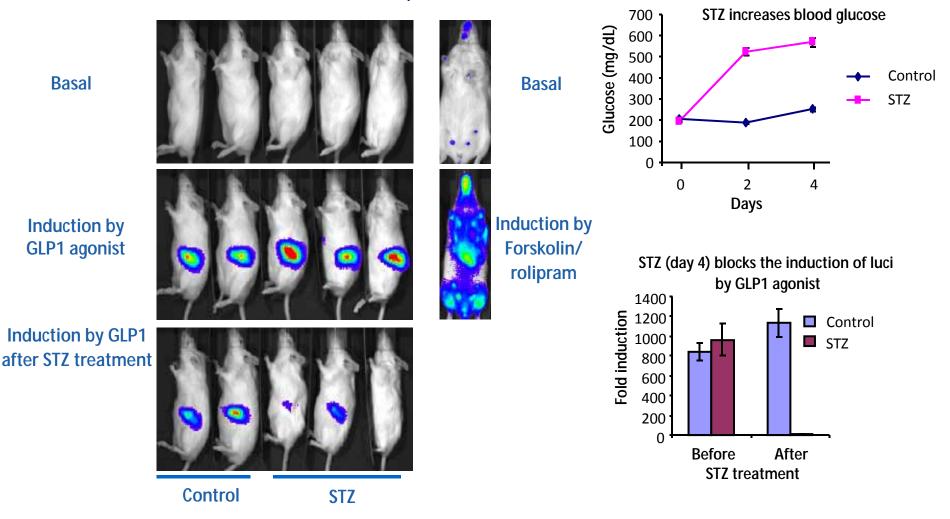
Response to Isoproterenol in line 187 with CNS predominate luci expression


- Treatment: isoproterenol, 10MPK, ip
- Imaging at T=0 and 5 hours
- Statistically significant increase in quantitative CNS response over baseline

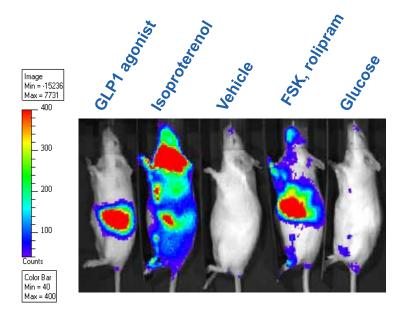

Isoproterenol *ex vivo* (brain slice) response in CRE Luc line 187

SANOFI 🏹

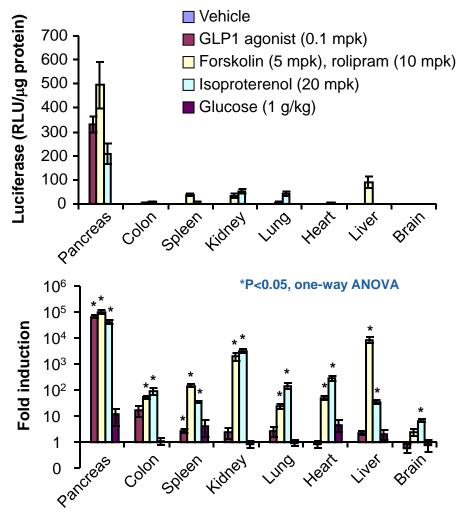
- Compound induced changes in luciferase levels in brain slices can be detected and quantified by bioimaging
 - Gs agonist: isoproterenol signal is diminished by Gi agonist AMN087
- Strategy to identify the region specific expression of the transgene and drug interaction



Isoproterenol response of CRE Luc SANOFI

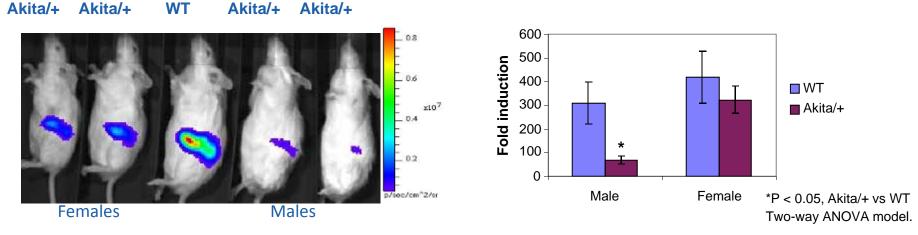

Pancreatic specific induction of luciferase SANOFI

Pancreatic specific induction of luciferase by the GLP1 agonist is blocked by streptozotocin treatment due to the destruction of β-cells


GLP1 agonist induces luciferase expression SANOFI

- GLP1R found in multiple tissues, however compound activity is only seen in pancreas.
- CRE Luc model defines the site of action for a compound *in vivo* (rapid PK/PD).

- Compound dependent patterns of luciferase expression, suggesting that pancreasspecific activity of the GLP1 agonist is unlikely an transgenic artifact.
- Strong induction in the pancreas by the GLP1 agonist, isoproterenol, and forskolin plus rolipram was observed.


Ex vivo assay on tissue homogenates

Pancreatic luciferase response in CRE Luc-Ins2^{Akita} mice

SANOFI 🏹

- Ins2^{Akita} is an autosomal dominant mutation that causes early onset hyperglycemia in the absence of obesity, due to a missense mutation resulting in mis-folding of proinsulin and death of β cells.
- Crossed CRE Luc with Ins2^{Akita} (FVB/N background) to see if CRE-Luc induction is correlated with β cell function in this T1DM model.
- 8-week old mice were subject to baseline imaging on day 1 and treatment with GLP1 agonist (0.1mpk, sc) followed by re-imaging at 4 hr on day 2.

- Decreased CRE Luc induction by the GLP1 agonist (0.1 mpk, sc, 4 hrs) in the highly diabetic male mice. This effect was not significant in the less diabetic female littermates.
- In vivo signals were confirmed by ex vivo luciferase assay in a subset of animals.

Summary

SANOFI

From initial studies, we have demonstrated the utility of the CRE Luc model to profile compounds in whole animals, tissue extracts, slices, and primary cells *in vitro*.

Profiling responses for various GPCRs have been tested in the following combinations

Gs agonist:

- In vitro with microglia, neurons, cardiomyocytes, MEFs and brain slices
- In vivo in the pancreas, brain, spinal cord
- Gs antagonists:
 - In vitro: microglia, neurons, and T cells
 - In vivo: brain, spinal cord
- Gi agonists:
 - In vitro: neurons, Tcells, brain slices
- Gi antagonists:
 - In vitro: neruons, Tcells, brain slices

Characterization of the CRE Luc lines

SANOFI

 Details of the profiling assays with the CRE Luc transgene have been summarized in a single table (available upon request)
 Eight CRE Luc lines are available through Taconic Biosciences

	A	В	С	D	E	F	G	н	T	
1	Line number	Frozen	Breeding status	Primary tissues expressing luci transgene (bioimaging ł enzyme assay)	Reference compound validation assays			Bioimaging picture		
2					In vivo assays	in vitro assays	ex vivo i in vivo		Doraal	Ventral
9	44	Jax sperm Het (GC to live born)	Het (BRW)	bone marrow (high basal), spl high basal expression in bones (BM), brain		 BM and splenocytes used for RNAi whole splenocytes Gs: DP-BW245C, EP2, EX00000173A, βAR- isoproterenol BM engraftment into NSG mice (potential use for Gi agonists) 	•adipose, int.panc, lung, spl, br Gs: Adrb3- CL316,243	Gi (pre JucVine bidmaging pictures V	Transition of the second secon	Ventral
10	64	Jax sperm Het (QC to live born) CPL sperm Ho	Ho (BRWICRL)	spleen, kidney			•adipose, int.panc, lung, spl, br Gs: Adrb3- CL316,243	Gilçae lucijine bidməqing pictures y	Erent Corest	
3	69	Jax sperm Het (QC to live born) CPL sperm Ho	Ho (BRWICRL)	spleen, kidney, liver, brain		*neurons Gi agonist: CB1- CP55,940 Gi agonist: PROKR2-PROK2 peptide whole splenocytes Ga: DP-BW245C, EP2, EX00000173A, βAR- isoproterenol	•adipose, int.panc, lung, spl. br Gis: Adrb3- CL316,243	Gi (pe luci)ine bidmaging pictures V		

Acknowledgements and Model Availability

Immunology Experimental Pharmacology

- Holly Dressler (PTL, model generation, development, and applications)
- Fernando Camacho (psoriasis)
- Kyriakos Economides (psoriasis)
- Andy Giovanni (brain slices)
- Sarah Favara (linage profiling, CNS)
- Zhen Pang (diabetes, Metabolism)
- Nancy Wu (dibaetes, Metabolism)

CRE-Luc model information

Greg Polites: greg.polites@sanofi-aventis.com or hgpolites3@gmail.com

CRE-Luc model availability

Taconic Biosciences email: info@taconic.com

SANOFI 🏹