B6 Albino A⁺⁺ Mutant Mice as Embryo Donors for Efficient Germline Transmission of B6 ES Cells

Taconic Webinar 2014-05-14 Prof. Dr. Branko Zevnik

Universität zu Köln

AL DZNE Deutsches Zentrum Neurodegenerative in der Helmholtz-Gr

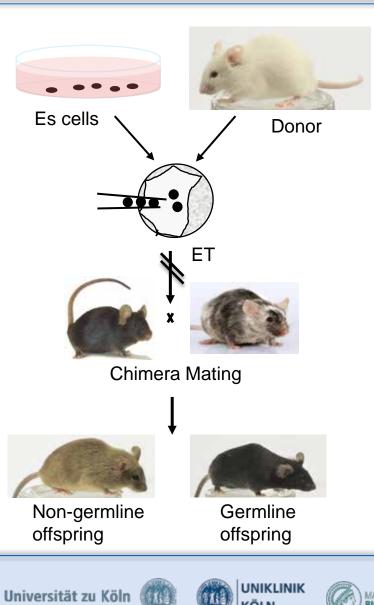
Deutsche Forschungsgemeinschaft

FCA

A decade of gene targeting in B6 ES cells at TaconicArtemis (2000 – 2010)

- ESC Manipulations:
 - 1840 B6 ESC transfections
 - 7826 clones individually frozen
- Embryo-Injections
 - 2133 Injection "Sessions"
 - 122184 blastocysts injected
- Mice work
 - 9869 B6 chimeras weaned
 - 3226 B6 chimeras mated
- => R&D on process optimization

CECA


- Gertsenstein M. et al., (2010) PLoS One, .5(6):e11260)
 - C2 ES cells derived from C57BL/6NTac
- EUCOMM
 - Uses primarily **JM8** ES cells, derived from C57BL/6NTac
- Knockout Mouse Project (KOMP)
 - JM8 and VGB6 ES cells, derived from C57BL/6NTac,
 - EAP1 ES cells, derived from C57BL/6N

=> Requirement for optimized protocols and tools for ES cell based transgenesis

Focus: Donor of embryos for injection of B6 ESC

•

- Should allow maximal contribution of ES cells to embryonic development
 - Preferrably ,Inbred ES cell' <-> ,Inbred host embryo' combination
- Should have a maximally different coat color compared to the ES cell background to allow judgement of ES cell colonization
 - "Black" 6 ES cells <-> albino donor strain
- Should allow detection of transmission of the ES cell genome by coat color in 100% of offspring
 - Example BALB/c:
 - B6CF1 ,non-germline' = agouti
 - B6 derived ,germline' = black

CECAI

- C57BL/6, B6D2F2
 - No detection of coat colour chimerism (black on black), genotyping of all potential chimeras and germline mating of offspring required

FCA

- BALB/c
 - Poor response on superovulation
 - 3 4 blastocysts are harvested from one BALB/c donor on average.
 - Approximately 16 donor BALB/c mice are required for the injection of 1 ES clone.
 - Unequal and delayed development of blastocysts
- B6 albino strains (C57BL/6-*Tyr^{c-Brd}*, B6(Cg)-*Tyr^{c-2J/}J*)
 - Detection of germline transmission via coat color requires either
 - breeding onto the desired B6 (sub)strain
 - No coat color distinction, genotypic analysis of all offspring,or
 - breeding onto the B6 albino host strain
 - Substrain background not maintained, carry-over of mutated Tyr allele

b Conclusion

The current limitations on embryo donors are ineconomical and contradictory to Animal Welfare Aims (Reduction of animal numbers used in research!)

Þ Goal

Development of a better female donor mouse/embryo host for C57BL/6 based ES cell transgenesis

• The dominant agouti locus (*A*) mainly determines agouti pigmentation, the true wild-type coat color of mice, through the agouti signaling protein

 C57BL/6 strains harbour a recessive mutation of the agouti locus, the nonagouti (a) allele. An 14.7 kilobase pair retrotransposon in the first intron of the agouti gene abolishes transcription of Agouti mRNA.

• Albinism (white coat color) is caused by non-functional mutations of the tyrosinase (*tyr*) gene and epistatic over agouti.

Silvers W., The Coat Colors of Mice, Springer, 1979; Adapted by: Mouse Genome Informatics, June 2003, Revised January 2008

Melanin synthesis

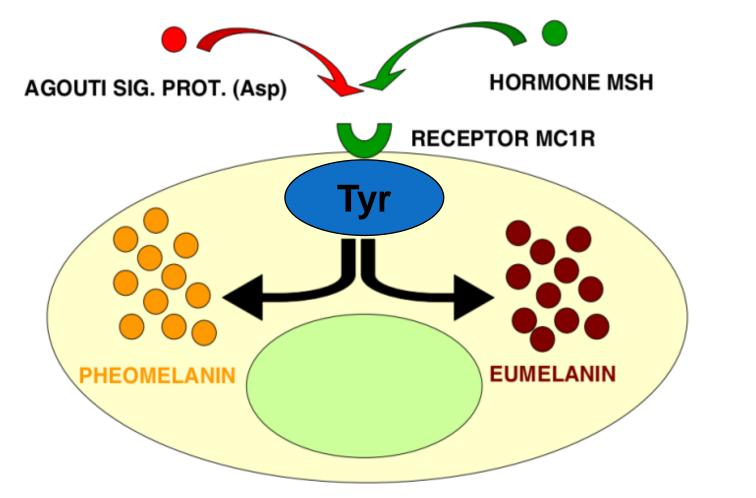


Illustration adapted from: Montoliu, L., TT2010 meeting, Berlin

00

CECAD

Non-functional agouti signalling protein

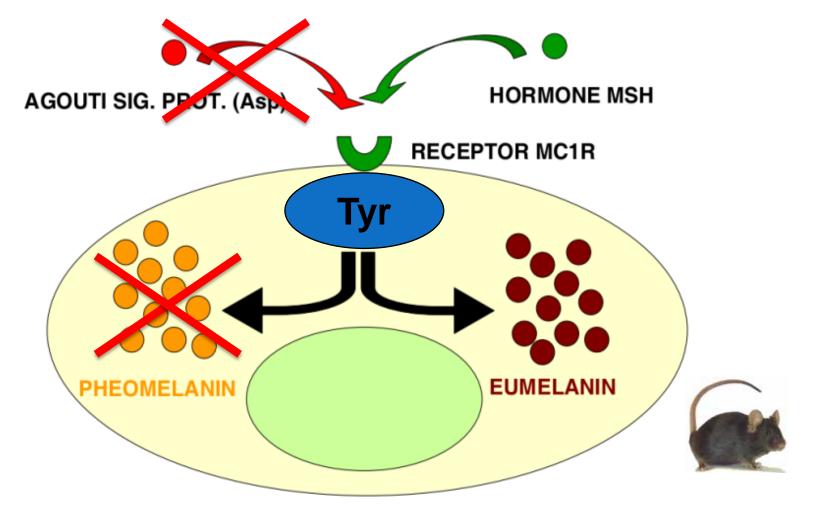
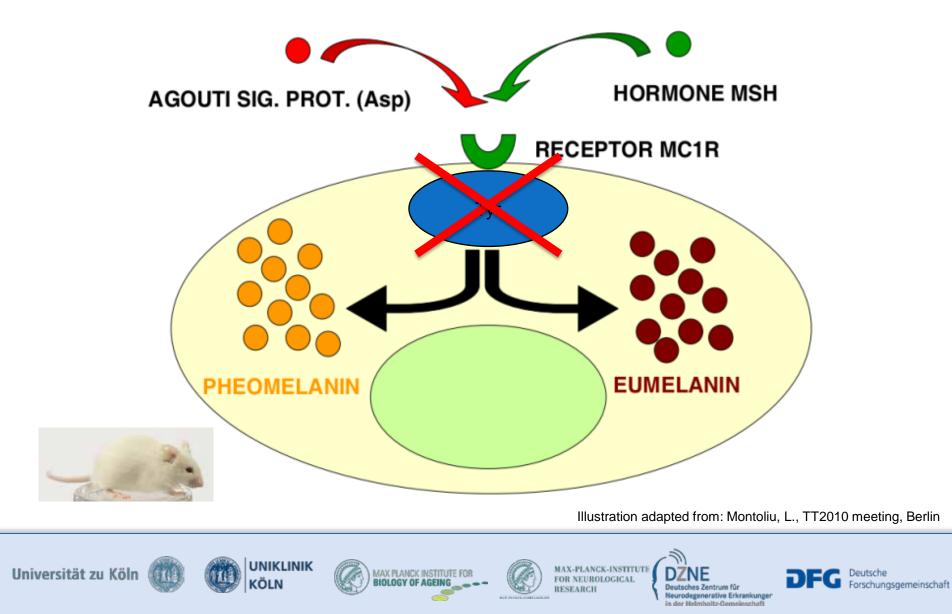
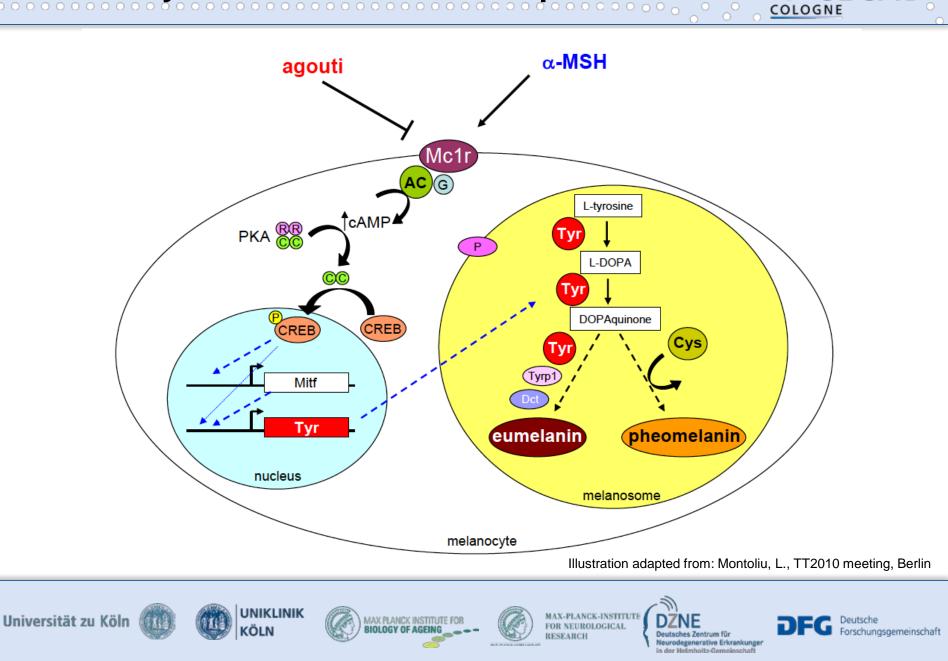


Illustration adapted from: Montoliu, L., TT2010 meeting, Berlin

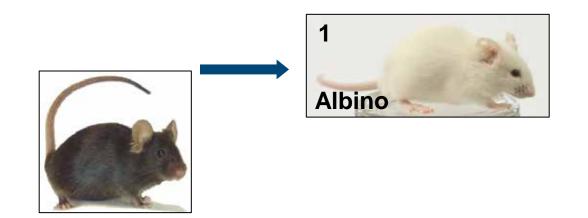



CECAD

Non-functional tyrosinase

CECAD

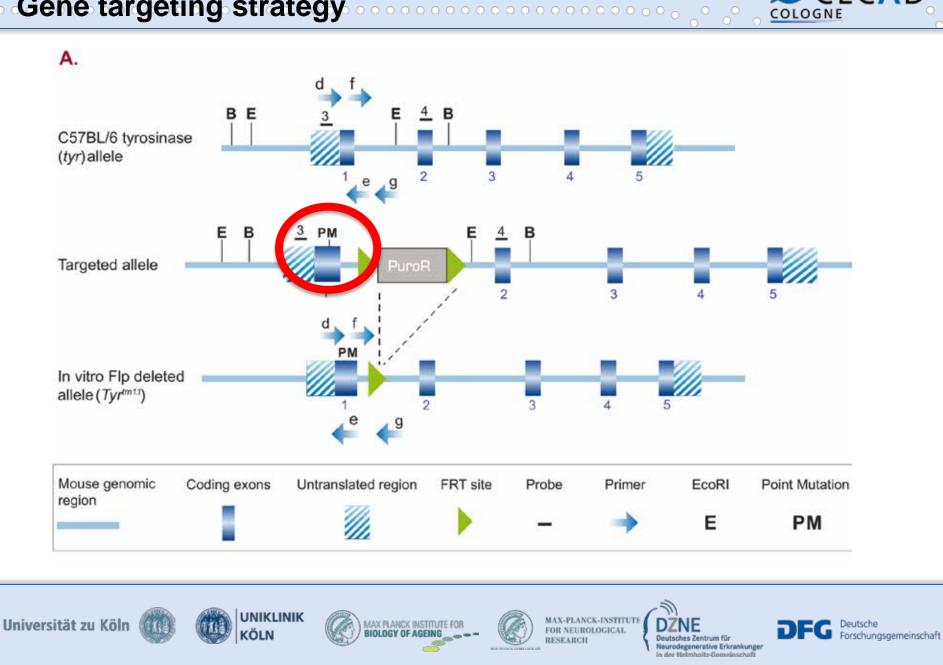
Melanin synthesis is far more complex



CECAD

Generation of Albino and Albino A++

1. C57BL/6NTac-Tyrtm1Arte


Gene targeting of the tyrosinase (*tyr*) gene: Introduction of a point mutation in exon 1 (C103S)

ECA

Inactivation of the tyrosinase locus Gene targeting strategy

CECAD

Inactivation of the tyrosinase locus Validation

B. Validation of ES cell clones

C. Verification of the Tyr C103S alleles

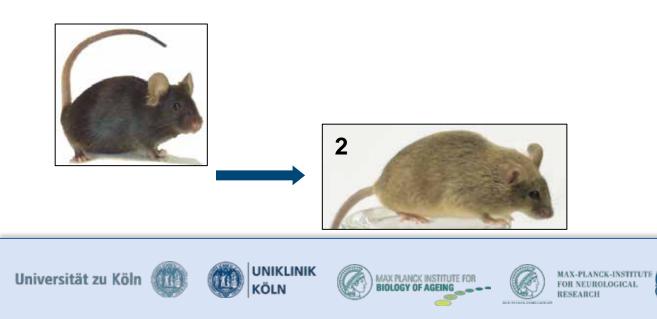
Universität zu Köln

MAX-PLANCK-INSTITUTE FOR NEUROLOGICAL RESEARCH

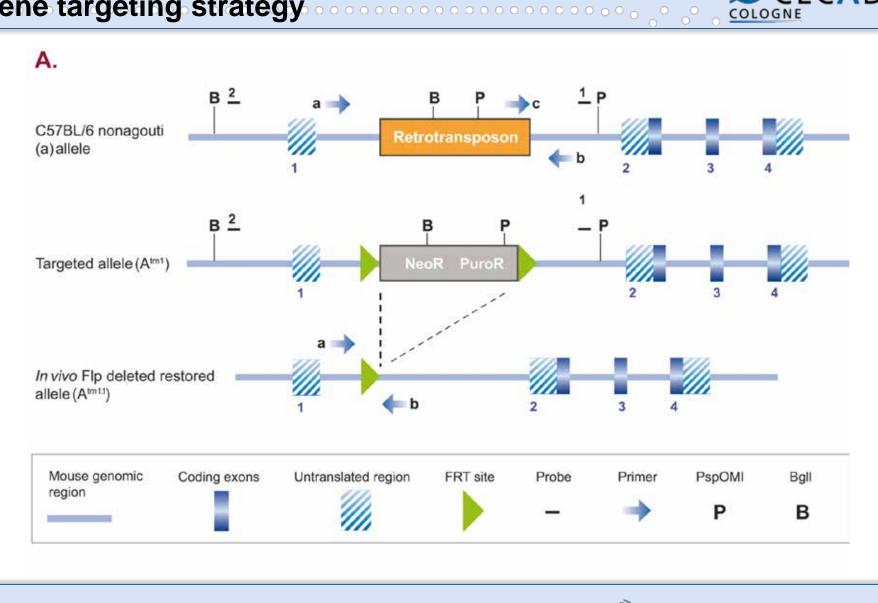
Neurodegenerative Erkrankunger der Helmholtz-Gemeinschaft

CECAD

0 1


Generation of a compound B6 mutant host

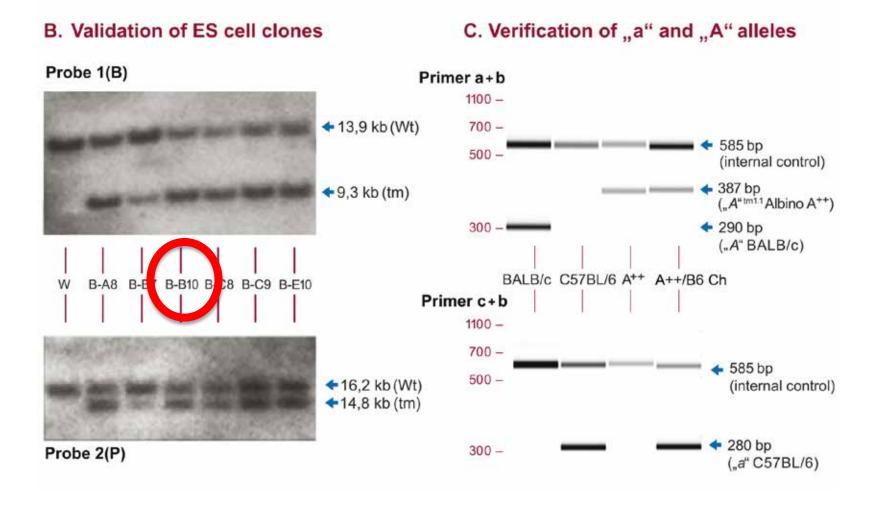
2. C57BL/6NTac-Atm1.1Arte


Targeted reversion of the non-agouti locus (a) to agouti (A). Deletion of the 14.7 kb retrotransposon. Phenotype in B6: agouti coat colour (A dominant over a) CECA

Forschungsgemeinschaft

enerative Erkrankunger

Restoration of the agouti locus Gene targeting strategy



CECAD

Restoration of the agouti locus

Universität zu Köln 👊 🚺 Köl

TUTE DZNE Deutsches Zentrum für Neurodegenerative Erkrankunger in der Helmholtz-Gemeinschaft

CECAD

Generation of a compound B6 mutant host

- 1. C57BL/6NTac-*Tyr^{tm1Arte}* Gene targeting of the tyrosinase (*tyr*) gene to create an albino B6 mouse
- 2. C57BL/6NTac-Atm1.1Arte

Targeted reversion of the non-agouti locus (a) to agouti (A). Phenotype in B6: agouti coat colour (A dominant over a)

3. C57BL/6NTac-Atm1.1Arte Tyrtm1Arte

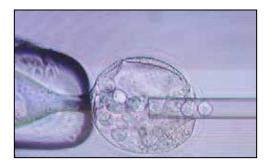
Breeding homozygous double mutants. Phenotype albino (*Tyr* epistatic over A)

CECA

SNP confirmation

SNP	Chr	Position	C57BL/6NTac	albino A++	C57BL6/J
Mus-Ptprc	1	52665170	С	С	С
rs13476148	1	142911628	А	А	С
CEL-2_23847726	2	23847726	С	С	А
rs13476554	2	67180899	Т	Т	А
rs13477019	3	23589162	А	А	Т
Mus-Tyrp1B	4	80481305	G	G	G
rs13477622	4	28491198	G	G	А
rs3662161	5	114905705	G	G	А
rs13478783	6	60682681	G	G	А
rs13478995	6	117862153	С	С	G
Mus-TyrC	7	94641553	G	С	G
rs13479522	7	116540646	G	G	А
rs13480100	9	21200544	G	G	А
rs13480122	9	31136193	G	G	А
rs13480619	10	57805922	G	G	А
rs29359333	10	57796761	Т	Т	С
rs13480759	10	109059096	А	А	G
rs13481014	11	47757117	G	G	А
rs13481573	12	82237479	А	А	G
rs13481634	12	101558810	С	С	А
rs13481734	13	26416832	G	G	А
CEL-14_116404928	14	116404928	А	А	G
rs4165065	16	17188907	G	G	А
rs13483055	17	58655424	G	G	А
rs13483237	18	19671420	G	G	С

SNP confirmation of the C57BL/6NTac substrain identity of Albino A++ (blue), compared to C57BL/6J (red). The gene-targeted *Tyr* nucleotide exchange from G to C resulting in a C103S amino acid substitution in Albino A++ is highlighted.



ECA

Initial superovulation protocol

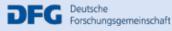
- B6 ESC diploid blastocyst injections:
 - BALB/c donor
 - On average 8 wks
 - Albino A++ donor
 - On average 4 5 wks
 - 5 IU PMSG <- 46h -> 5 IU HCG
 - Light cycle 12:12 (light:dark)
 - Limited expansion of harvested morulae at day of injection
 - Piezo-assisted injection of 15 ES cells/blc
 - Injection of 48 blc/ES clone
 - Bilateral transfer of 16 blc/NMRI foster

Superovulation response of Albino A++

25.00 **All Females Plug Positive Females** 20.00 # embryos / female 16.1 BALB/cJBomTac 15.00 12.6 11.2 Albino A++ 8.7 10.00 5.00 0.00 morulae + blasts blasts morulae + blasts blasts

- Higher yield of embryos:
 - Superovulation response 2.5 3 x better compared to BALB/cJBomTac
- More equal embryonic development:
 - 70% harvested blastocysts at dpc 3.5, compared to 53% in BALB/cJBomTac

	Albino A	A++ (%)	Alb	ino (%)
# C57BL/6NTac ES Clones injected	21		3	
# pups born	210		20	
# chimeras born (% of live born)	156	74%	19	95%
# male chimeras weaned (% of chimeras born)	142	91%	12	63%
# > 50% chimeric males (% of chimeras born)	89	57%	9	47%
# clones test mated	6		2	
# chimeras tested	17		5	
# chimeras sterile	3		0	
# GLT [*] chimeras (% of chimeras mated)	14	82%	5	100%
# GLT clones (% of clones mated)	6	100%	2	100%


* GLT indicates germline transmission

CECAD

1st Summary

	BALB/c	Albino	Albino A++		
+ C57BL/6 ES cell injection					
Superovulation response	poor	good	good ¹		
Chimera coat color recognition	Yes (black/agouti/white)	Yes (black/white)	Yes (black/agouti/white)		
+ C57BL/6 x chimera mating					
Coat color recognition of G1 GL offspring	Yes	No	Yes (black or agouti)		
Maintenance of substrain specificity in G>0	No	Yes	Yes		

1 = Ca. 2.5 x less donors needed to produce sufficient chimeras for germline transmission of ES cells

CECAI

Use of Albino/-A++ host in various ES cell and mating partner combinations

I) Albino A++ host Strain: C57BL/6NTac-Atm1.fArteTyrem1 (allele configuration: Atm1.1/Atm1.1, Tyrem1/Tyrem1)

	ES cell	Chimera Coat Color	Mating Partner	Offspring Non-Germline		pring nline
1a	B6.3-6, JM8, C57BL/6NTac (a/a, Tyr/Tyr)	C57BL/6NTac + C57BL/6NTac (Amt.1/Amt.1, Tyr ^{6m1} /Tyr ^{6m1}) + (a/a, Tyr/Tyr)	C 57 BL/6N Tac (a/a, Tyr/Tyr)	C57BL/6NTac (A ^{tm11} /a, Tyr ^{em1} /Tyr)		/6NTac yr/Tyr)
1b	B6.3-6, JM8, C57BL/6NTac (a/a, Tyr/Tyr)	C57BL/6NTac + C57BL/6NTac (A ^{mt,1} /A ^{mt,1} , Tyr ^{6mt} /Tyr ^{6mt}) + (a/a, Tyr/Tyr)	C57BL/6NTac (A ^{tm1.1} /A ^{tm1.1} , Tyr ^{tm1} / Tyr ^{tm1})	C57BL/6NTac (A ^{m1.1} /A ^{m1.1} , Tyr ^{m1} /Tyr ^{m1})		/6NTac <i>Tyr/Tyr^{(m†}</i>)
2a	JM8A.3 (C57BL/6NTac) (A ^{tmtBrd} /a, Tyr/Tyr)	$\begin{array}{l} \texttt{C57BL/6NTac} & \texttt{C57BL/6NTac} \\ (\texttt{A}^{\texttt{init},\texttt{f}}(\texttt{A}^{\texttt{init},\texttt{f}},\texttt{Tyr}^{\texttt{init}}/\texttt{Tyr}^{\texttt{init}}) & \texttt{(}\texttt{A}^{\texttt{init},\texttt{fibrd}/\texttt{a}},\texttt{Tyr}/\texttt{Tyr}) \end{array}$	C 67 BL/6N Tac (a/a, Tyr/Tyr)	C57BL/6NTac (A ^{tm1.1} /a, Tyr ^{am1} /Tyr)	C57BL/6NTac (a/a, Tyr/Tyr)	C57BL/6NTac (A ^{sm tBrd} /a, Tyr/Tyr)
2b	JM8A.3 (C57BL/6NTac) (A ^{untBrd} /a, Tyr/Tyr)	$ \begin{array}{l} C57BL/6NTac &+ C57BL/6NTac \\ (A^{mil.1}/A^{mil.1}, \ Tyr^{mil}/Tyr^{mil}) &+ (A^{milBrd}/a, \ Tyr/Tyr) \end{array} $	C57BL/6NTac (A ^{ton1.1} /A ^{ton1.1} , Tyr ^{ton1} / Tyr ^{ton1})	C57BL/6NTac (A ^{am1.1} /A ^{am1.1} , Tyr ^{am1} /Tyr ^{am1})	50% (a/Atmf.	/6NTac ¹ , <i>Tyn/Tyr^{imi}</i>) ^{xm1,1} , <i>Tyn/Tyr^{imi}</i>)

COLOGNE

II) Albino host Strain: C57BL/6NTac-Tyrtm1.1Arte (allele configuration: a/a, Tyrtm1/Tyrtm1)


	ES cell	Chimera Coat Color	Mating Partner	Offspring Non-Germline		pring nline
	B6.3-6, JM8, C57BL/6NTac (<i>a/a, Tyr/Tyr</i>)	CS7BL/SNTsc CS7BL/Supervised and a second se	C57BL/6NTac (a/a, Tyr/Tyr)	C57BL/6NTac (a/a, Tyr ^{and} /Tyr)		/6NTac yr/Tyr)
1b	B6.3-6, JM8, C57BL/6NTac (<i>a/a, Tyr/Tyr</i>)	267 BURNING + COVIN 1997 - 1997 - 17 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 2997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	C57BL/6NTac (a/a, <i>Tyr^{ent}/Tyr^{ent}</i>)	C57BL/6NTac (a/a, Tyr ^{anf} /Tyr ^{anf})		/6NTac r/Tyr ^{am1})
	JM8A.3 (C57BL/6NTac) (A ^{smtBrd} /a, Tyr/Tyr)	C67BL/6NTac + C67BL/6NTac (a.a, Tyr ^{amf} /Tyr ^{amf}) + (A ^{mmBrd} /a, Tyr/Tyr)	C57BL/6NTac (a/a, Tyr/Tyr)	C57BL/6NTac (<i>ala, Tyr^{and}/Tyr</i>)	C57BL/6NTac (a/a, Tyr/Tyr)	C 67 BL/6N Tac (A ^{sm 1Brd} /a, Tyr/Tyr)
	JM8A.3 (C57BL/6NTac) (A ^{tmtBrd} /a, Tyr/Tyr)	C67BL/6NTac + C67BL/6NTac (a/a, Tyr ^{cort} /Tyr ^{cort}) + (A ^{tortBrd} /a, Tyr/Tyr)	C57BL/6NTac (a/a, Tyr ^{em1} /Tyr ^{em1})	C57BL/6NTac (a/a, Tyr ^{em1} /Tyr ^{em1})	C57BL/6NTac (a/a, Tyr/Tyr ^{end})	C57BL/6NTac (AtmiErd/a, Tyr/Tyr ^{an1})

 Zevnik B. et al., (2014) C57BL/6N Albino/Agouti Mutant Mice as Embryo Donors for Efficient Germline Transmission of C57BL/6 ES Cells. PLoS ONE 9(3): e90570.

Observation

- Standard SOV protocol is only partly applicable for Albino A++
 - Injectable embryo yield varies
 - Taconic experience:
 - on average **7.2** injectable embryos/donor employed
 - Independent test users (8 labs)
 - Range between 3.9 and 12.7 injectable embryos/donor employed
 - Embryos are too far advanced (hatching) at the time of injection
 - Difficult manipulation
 - Lower birth rates and lower chimerism
 - Diminished germline transmission rates

hungsgemeinschal

- 4 5 wk old female
- Light cycle 12:12 (light:dark)
- 5 IU PMSG at 3 pm on day 1
- 5 IU HCG at 1 pm on day 3
- Mate directly
- Collection at 3.5 dpc, start 6 am
- Incubate for max. 1h at room temperature

ptimized superovulation protocol


- Piezo-assisted injection of 7 9 ES cells/blc
- Bilateral transfer of 16 blc/NMRI foster

Recommendation

- Shorten time from SOV to harvest by ca. 2 hrs
- inject fewer ES cells per blastocyst

Optimized protocol: Evaluation of chimera

Injection of gene-targeted C57BL/6NTac ES clones

	Albino A++
# embryos transferred	1002
# live pups (% /transferred)	353 (35,2%)
# live chimeras	231 (65,4%)
Chimeras/blastocyst transf.	23,1%
> 50% chimeras (%/all ch.)	116 (50,2%)
# embryos injected/ch.	9
# donor mice to generate 1 chimera	1,2

Optimized protocol: Evaluation of chimera matings

Injection of gene-targeted C57BL/6NTac ES clones

	Albino A++
# chimeras test mated	27
# GLT chimeras (%)	17 (63%)
No GLT	3 (11%)
No offspring	7 (26%)

FCA

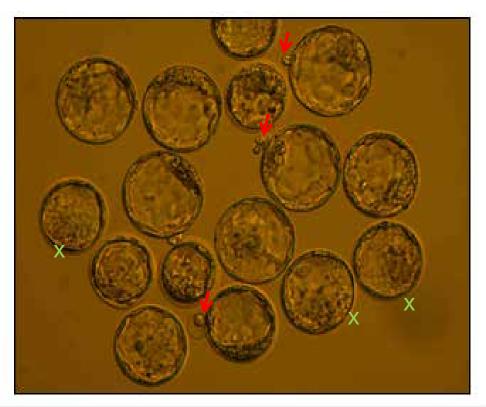
COLOGNE

High number of chimeras unable to sire litters

Comparison of chimera breedings

	Albino A++	BALB/c
Average litter size	7,2 +/- 2,6	7,4 +/- 1,9
Average % germline pups	55,1% +/- 28,3%	65,5% +/- 36,1%
Average duration until first litter (d)	30,7 +/- 12,3	27,3 +/- 10,9

CECAD


COLOGNE

Differences between strains are not significant.

- Important to inject embryos in best phase (not under/over-developed)
 - chimerism is strongly dependent on this
- Do not inject too many ES cells; use 7-9 cells per embryo

Picture: NIH-funded research at UCONN-HARVARD and UCDavis

Universität zu Köln

- Chimeras generated from B6-derived ES cells and B6 Albino A++ blasts are tri-colored.
 - The agouti signalling peptide (produced in donor embryo-derived tyrosinase deficient cells), can produce a paracrine signalling effect in melanocytes derived from the ES cells. ES cell-derived hair patches can thus be either black or agouti. Both black and agouti patches should be counted for determination of chimerism percentages.

B6 ESC in B6-*Tyrc/c* Courtesy of S. Ortega, Spanish National Cancer Centre, Madrid, Spain

Universität zu Köln

-INSTITUTE

- C57BL/6NTac Albino or Albino A++ embryo donors display superior superovulation response compared to BALB/c
- Coat color recognition in chimeras is as predicted and equal to BALB/c hosts
- Upon injection with QC'd B6 ES cells, > 50% chimeras are generated at good frequencies (≥ 50%)
- Germline offspring is distinguishable by coat color as predicted
- Germline transmission frequency per chimera mated is equal or superior to standard published results (63 to 82%).
- Breeding performance of germline-transmitting chimeras equals standard results.
- C57BL/6NTac substrain specificity is maintained

▷ Conclusion

Albino or Albino A++ are an optimized ,tool' for ES cell based transgenesis, both in economic and animal welfare terms.

