A model novel design for prostate cancer suggests enzalutamide utilization through the immune system to diminish metastatic growth.

EXPERIMENTAL DESIGN

PURPOSE

The purpose of this study was to investigate the role of the immune system in mediating the effects of enzalutamide therapy in a human-derived model of prostate cancer metastasis.

MATERIALS AND METHODS

The study utilized a mouse model of human prostate cancer metastasis, where human prostate cancer cells were implanted into the flanks of immunocompromised NOG mice treated with enzalutamide (10mg/kg-MDV3100) or vehicle control (vehicle), which was also given intravenously. No significant changes were observed in the tumor sizes within each of the treatment groups, with either donor, immunocompromised control, nor AR-antagonist treatment; however, there is variability in the tumor sizes within each of the treatment groups.

RESULTS

The study revealed that enzalutamide treatment leads to an increase in detectable metastases seen in immunocompromised mice treated with enzalutamide, suggesting a potential role for the immune system in mediating the effects of enzalutamide therapy.

CONCLUSIONS

The findings of this study suggest that enzalutamide treatment may lead to an increase in detectable metastases seen in immunocompromised mice, highlighting the potential role of the immune system in mediating the effects of enzalutamide therapy in human prostate cancer metastasis.

ACKNOWLEDGEMENTS

This study was supported by Cancer Biology Training Grant (T32-CA09676), and A. Alfred Taubman Challenge Award and in part by the NCI Prostate SPORE (P50CA69568) to A.M.C. The authors thank Dr. Rahul Manan, MD for histological validation (H&E stain) of the femoral metastases confirmed by a pathologist (Dr. Rahul Manan, MD), with cancer cells seen in both the bone marrow and matrix of the epiphyseal head of a mouse femur (C –yellow arrow indicates bone metastases). The authors also thank the technical support of Dr. E. Steven Kregel, PhD for the xenograft of 22Rv1.luc2 cells (transduced with Promega luciferase2 ® for bioluminescent imaging). 22Rv1 are the most aggressive prostate cancer cell line in human specific ALU-repeat PCR (D).

IMMUNOPROFILING OF 22RV1 SUBTUMOROUS CELLS IN huNOG MICE CARRIED AND OR TREATED WITH ENZALUTAMIDE (MDV).