

Survival Guide: Maintaining Genetic Integrity in Breeding Colonies

GENETIC SCIENCES & COMPLIANCE ANA V. PEREZ, Ph.D.

- Importance of Genetic Quality
- Importance of Genetic background
 - Inbreds
 - Development of Congenic Strains
 - Outbreds
 - Maintaining allelic heterozygosity
- Importance of Genetic Monitoring in Genetically Modified Animals
 - Different techniques to generate GEMS
 - Genetic Quality checks- Sequencing
 - Genetic Background Testing
 - SNP Testing, microsatellite markers
 - Establishing an internal genetic monitoring program
 - Considerations of mixed backgrounds
 - Genotyping
 - Test for all alleles
 - Choosing the "Right" Experimental Control

Parameters influencing *In Vivo* Research

Needed Validity and Reproducibility in Science

Using the mouse to model human disease: increasing validity and reproducibility

Monica J. Justice^{1,*} and Paraminder Dhillon²

Racaarch

Disease Models & Mechanisms (2016) 9, 101-103 doi:10.1242/dmm.024547

Reproducibility in Science Improving the Standard for Basic and Preclinical Research

C. Glenn Begley, John P.A. Ioannidis

(Circ Res. 2015;116:116- 126. DOI: 10.1161/CIRCRESAHA.114.303819.)

The Researchers' View of Scientific Rigor— Survey on the Conduct and Reporting of *In Vivo* Research

Thomas S. Reichlin, Lucile Vogt, Hanno Würbel*

Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland PLOS ONE | DOI:10.1371/journal.pone.0165999 December 2, 2016

What is Genetic Quality and its Importance

The Preservation of Genetic Purity Accuracy Reproducibility Reliability

Types of Mouse Models

Production of offspring from mating of male and female mice that are closely related genetically, typically brother x sister mating. A line is considered inbred after 20 generations of brother x sister matings. Inbreeding results in homozygosity.

(i) Learn more about inbred mice at taconic.com/inbred-mice

18%

12%

1%

RANDOM TRANSGENIC *

Mice in which a transgene has been randomly inserted into the genome typically by microinjection of a DNA fragment into a pronuclear embryo.

(i) Learn more about transgenic mice at taconic.com/transgenic-mice

Mice containing a targeted gene insertion or deletion through the use of embryonic stem cells or more recently CRISPR.

(i) Learn more about targeted mutations at taconic.com/targeted-mutations

(1) Learn more about CRISPR at taconic.com/crispr

Mice that differ in only one locus and a linked segment of chromosome. Backcrossing of 5–10 generations is usually required to develop a congenic strain.

(1) Learn more about congenic mice at taconic.com/congenic-mice

Source: labome.com/method/Laboratory-Mice-and-Rats.html

(•=)

Genetic Characteristics of Inbreds

- Used for their homogenous background
- The International Committee on Standardized Nomenclature defines an inbred strain as a colony maintained brother by sister mating for 20 generations
- Inbreds are genetically identical to each other
- Inbreds are homozygous at any locus across their entire genome (HH or hh)

How does Taconic safeguard Genetic Quality of Inbreds

- Genetic refresh from cryopreserved embryos every five years

 Avoids Genetic Drift
- Reestablish the line from a Common Ancestor pair
- Characterized Genetic Profile
- Global Colony harmonization
 Different sites are sourced from a single Foundation Colony
- Global Genetic Monitoring Program
 - At Genetic Risk Points

The Inbred Breeding Pyramid

Genetic Characteristics of Outbreds

- A population of different individuals- Genetic Variability
- Hybrid vigor: long life spans, high disease resistance, early fertility, large and frequent litters, low neonatal mortality, rapid growth, and large size
- Often allows maintenance of mutations that will not be able to maintain in an inbred strain
- Useful in a population studies- toxicity, etc

Breeding goal is to maximize diversity

How does Taconic Safeguard Genetic Quality of Outbreds

- Genetic refresh from cryopreserved embryos every five to seven years
- Characterized Genetic Profile of stock
- Breeding using Poiley system
 - Number of Groups
 - Number of cages/group
- Global Colony harmonization
 Outsourced colonies from same stock
- Global Genetic Monitoring Program
 - Monitoring allelic heterozygosity is consistent in all colonies

Different Origins of Genetically Modified Models

- Pronuclear Injections
- Homologous Recombination
- CRISPR/Cas9 Models

Pronuclear Injections

B6;SJL Tg(APPSWE)2576Kha

- Microinjected DNA inserts anywhere in the genome
- Each Founder is an independent line
- Number of copies of transgene is random
- Make sure that breeding follows Mendelian Segregation
- Find site of insertion
- Determine the stability of the transgene

Genetic Background

Targeted Mutations by Homologous Recombination

B6.129P2- Apoe^{tm2(APOE*3)Mae}

- Precise DNA insertion in the genome
- Maintain each ES clone separately
- Genetic Background
- When breeding mutation to Homozygosity –maintain HET x HET
- Cryopreserve

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Caspase 9

C57BL/6-Apelaem1.1Hadj

- Each Founder (Fo) is an independent line
- Sequencing of founders to verify mutation
- Fo should be mated with inbred strain to verify Mendelian segregation
- N1 generation should be sequenced and verified
- Genetic Background

Genetic Background influence on Phenotype of the mutation

PLOS Genetics | DOI:10.1371/journal.pgen.1005711 December 22, 2015

TACONIC

Genetic Background effects on Atherosclerosis Phenotype of Female mice

Artherosclerotic Lesion Size in proximal aorta vs strain

Genetic Background Effects on Atherosclerosis Phenotype of Male TACONIC 200,000 esion area (jum2/section) 100,000 0 Proving and a second se Number of the second se English B Shire NO CON **QUE**

Pdcd1-Programmed cell death 1

- *Pdcd1* gene, synonym PD-1, is an inhibitory receptor that is expressed in T cells, B cells and myeloid cells and regulates tolerance and autoimmunity
- The phenotype of *Pdcd1* KO varies depending on the genetic background
- In C57BL/6 background, *Pdcd1* deficiency causes lupuslike glomerulonephritis and arthritis
- In BALB/c background, Pdcd1 deficiency causes autoimmune dilated cardiomyopathy and gastritis
- In 129SvEv-Brd, *Pdcd1* deficiency causes endometrial hyperplasia and made them more susceptible to Experimental autoimmune encephalitis
- In NOD background, Pdcd1 deficiency accelerates the onset of Type 1 diabetes
- In MRL background- Fatal myocarditis

Pdcd1 KO in B6;129Sv mixed background-Augmented B cell Response

Nishimura et al., Intl Immunol 1998 10:1563

Pdcd1 KO- Congenic 129SvEv-Brd Endometrial Hyperplasia and

Gross Anatomy and histological Comparison

• Endometrial hyperplasia with Neovascularization and glands

Guo et al., Diagnostic Pathology, 2014 9:97

*Pdcd1*KO MRL Congenic- Fatal Myocarditis

Wang et al., Intl Immunol 2010 22:443

Genetic Background Testing

- DNA microsatellites
 - Short segments of DNA that have a repeated sequence
 - The length of the sequence repeat varies from species to species and from strain to strain
 - It is somewhat unstable, higher mutation rate
 - Artifact/Technical problems
 - It is difficult to perform in a high-throughput manner

Single Nucleotide Polymorphism or SNP

 Single Nucleotide Polymorphisms are DNA sequence variations that occur when a single nucleotide (A,T,C,or G) in the genome sequence is altered. For example a SNP might change the DNA sequence

AAGGCTAA to ACGGCTAA

- More Stable than microsatellites
- Scalable for high-throughput, can be tested in the order of thousands
- SNPs allow us to detect strain differences and/or mutations on the different mice we have

Taconic Genome Scan SNP Panel

		C57BL/6J		BALB/c	12956/	C3H/He				DBA/1J	DBA/2	FVB/	NOD/	SJL/JCr
	C57BL/6NTac	BomTac	C57BL/6J	AnNTac	SvEvTac	NTac	CBA/J	CBSCBG	CB17SC	BomTac	NTac	NTac	MrkTac	NTac
C57BL/6NTac	0	135	246	1148	1154	1230	1196	1123	1141	1145	1172	1094	1079	1058
C57BL/6JBomTac	135	0	111	1245	1252	1325	1291	1216	1238	1242	1269	1189	1176	1157
C57BL/6J	246	111	0	1354	1361	1434	1400	1325	1347	1351	1378	1298	1287	1267
BALB/cAnNTac	1148	1245	1354	0	858	618	680	31	9	829	846	812	777	780
129S6/SvEvTac	1154	1252	1369	858	0	829	843	873	861	859	902	779	798	740
C3H/HeNTac	1230	1325	1434	618	829	0	263	621	615	623	616	782	804	804
CBA/J	1196	1291	1400	680	843	263	0	695	685	559	584	767	798	810
CBSCBG	1123	1216	1325	31	873	621	695	0	22	834	851	823	780	797
CB17SC	1141	1238	1347	9	861	615	685	22	0	835	853	815	780	783
DBA/1JBomTac	1145	1242	1351	829	859	623	559	834	835	0	123	817	805	803
DBA/2NTac	1172	1189	1378	846	902	616	584	851	853	123	0	826	796	812
FVB/NTac	1094	1189	1298	812	779	782	767	823	815	817	826	0	622	484
NOD/MrkTac	1079	1176	1287	777	798	804	798	780	780	805	796	622	0	622
SJL/JCrNTac	1058	1157	1267	780	740	804	810	797	783	803	812	584	622	0

2 to 10 Informative markers: Basic Strain Identification 11 to 95 Informative markers: Strain Identification 96 to 400 Informative markers: Accelerated Backcrossing What is a congenic strain?

 In genetics, when referring to inbred strains two individuals that differ in one marker are defined as congenic.
 B6 Nude
 B6

Why do we need to generate Congenic Strains? TACONIC

- If we have a mutation in a mixed background it is important to see the effects of such mutation in a defined background
- Phenotype varies with genetic background so if we need to compare the data generated by our mutant to other models these should be in the same genetic background
- When crossing different mutants verify that they both are in a similar genetic background
- QTL and spontaneous mutants require to be moved from one background to another

Recordkeeping

Congenic Nomenclature

Substrain Differences in Inbreds

J Cell Physiol. 2018 Jan;233(1):371-377. doi: 10.1002/jcp.25895. Epub 2017 Jun 5.

Bone loss in C57BL/6J-OlaHsd mice, a substrain of C57BL/6J carrying mutated alpha-synuclein and multimerin-1 genes.

Liron T¹, Raphael B¹, Hiram-Bab S¹, Bab IA², Gabet Y¹.

A Direct Comparison of Metabolic Responses to High-Fat Diet in C57BL/6J and C57BL/6NJ Mice

Diabetes 2016;65:3249-3261 | DOI: 10.2337/db16-0291

Clinical Chemistry Reference Intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ

Mice (*Mus musculus*)

Vol 55, No 4 July 2016 Pages 375–386

Journal of the American Association for Laboratory Animal Science

Susceptibility to Plasmodium yoelii preerythrocytic infection in BALB/c substrains is determined at the point of hepatocyte invasion.

Infect Immun. 2015 Jan;83(1):39-47.

Behavioral Differences among C57BL/6 Substrains: Implications

for Transgenic and Knockout Studies J Neurogenet. 2008; 22(4): 315–331.

Segregation of a spontaneous KIrd1 (CD94) mutation in DBA/2

mouse substrains. G3 (Bethesda). 2014 Dec 17;5(2):235-9.

Origin of Taconic's C57BL/6 substrains

Genealogy of C57BL/6N Substrains

Development of SNP markers for C57BL/6N-derived mouse

inbred strains. Exp Anim. 2015;64(1):91-100.

Genetic Variants in C57BL/6 Mice

- Nnt^{C57BL/6J}- Nicotinamide nucleotide transhydrogenase, associated with impair glucose homeostasis and reduced insulin secretion. Reported as ~17 Kbp deletion
- *Cyfip2^{M1N}*-single base pair substitution resulting in an aminoacid change from Phe to Ser. Abnormal response to cocaine and methamphetamine.
- *Snca* Synuclein alpha and , associated with resistance to the effects of MPTP (1-methyl-4 phenyl -1,2,3,6-tetrahydropyridine, used as prototypical toxin) on dopamine levels, neurodevelopmental abnormalities. Reported as 365 Kbp deletion
- *Crb1^{rd8}-* single base pair mutation in *Crb1* (Crumbs homolog 1) gene which causes a form of mild retinal degeneration
- *NIrp12^{C57BL/6J-}* single base pair mutation in rod-like receptor pyrin domain containing 12 resulting in an aminoacid change from Arg to Lys, impaired immune response
- Y chromosome partial deletion, deletion of 40 Mbp of the Y chromosome, causes sperm abnormalities and increased Female to Male ratio

Commercial C57BL/6 Genetic Variants

Genetic						
Variant	C57BL/6NTac	C57BL/6NHsd	C57BL/6NCrl	C57BL/6J	C57BL/6JBomTac	C57BL/6JOlaHsd
Nnt ^{C57BL/6J}	No	No	No	Yes	No	Yes
Snca deletion	No	No	No	No	Νο	Yes
NIrp12 C57BL/6J	No	No	No	Yes	Yes	Yes
Cyfip2 ^{M1N}	Yes	Yes	Yes	No	No	No
Y chromosome						
partial deletion	No	No	No	No	Yes	No
Crb1 rd8	Yes	Yes	Yes	No	No	No
Dock2 ^{m1Hsd}	No	Yes	No	No	No	No

Taconic Biosciences Envigo Charles River Jackson Labs

Consider Genetic Background

- Potential genetic drift of the background
- Potential phenotype variation
- Non-reproducible or inconsistent results
- Unable to interpret the data due to presence of unwanted alleles

Testing for all potential alleles in your genetically modified

Table 2. Comparison of eye phenotypes in control *Le-Cre^{Tg/-}; Pax6^{+/+}*, experimental *Le-Cre^{Tg/-}; Pax6^{fl/+}* and different *Pax6* heterozygous mice.

Genotype	Le-Cre ^{Tg∧} ; Pax6 ^{+/+} (from stage 1 crosses)	Le-Cre ^{7g/} ; Paxó ^{8/+} (from stage 1 crosses)	Pax6 ^{+/Sey-Neu}	Pax6 ^{Sey/+}	Pax6 ^{Loca4/+}
Genetic background	~78% CBA, ~5% FVB & ~17% CD1	~78% CBA, ~5% FVB & ~17% CD1	75% CBA & 25% C57BL* or 100% CBA**	CD1 (outbred)	mixed (unspecified)
Reference	present study	present study	[19,22,41]	[47]	[39]
Phenotypes					
1. Eye size (mass or diameter)	normal (Fig. 3)	some are small (Fig. 3)	small	small	very small
2. Corneal epithelial layers	normal (Figs. 4-6)	reduced (Figs. 4-6)	reduced	reduced	reduced
3. Keratin 12 immunostaining in cornea	positive staining (Figs. 5T,X)	absent (Figs. 5U,Y)	reduced staining	ND	ND
4. Keratin 19 immunostaining in	limbus not cornea	limbus & patchy in cornea	limbus & cornea**	ND	ND
cornea	(Figs. 5K,P)	(Figs. 5L,M,Q)			
5. Goblet cells in corneal epithelium	absent (Fig. 4K)	present (Fig. 4L)	present	ND	absent
6. Blood vessels in cornea	none seen	none seen	present in some	present	present very early
7. Lens structure	normal (Figs. 2C,D)	cataracts and abnormal (Figs. 2E,F)	cataracts	cataracts	cataracts and vacuolated.
8. Lens-corneal plug in corneal epithelium (persistent lens stalk)	absent (Figs. 2,4,5)	lens-corneal plug in some corneas (Fig. 5M)	lens-corneal plug present	lens-corneal plug in some corneas	absent
9. Kerato-lenticular adhesions or strands	absent	absent	some adhesions	strands	adhesions

Citation: Dorà NJ, Collinson JM, Hill RE, West JD (2014) Hemizygous Le-Cre Transgenic Mice Have Severe Eye Abnormalities on Some Genetic Backgrounds in the Absence of LoxP Sites. PLoS ONE 9(10): e109193. doi:10.1371/journal.pone.0109193 Critical Genetic Quality Checks

- Consider Potential genetic drift when working with mixed background
- Potential phenotype variation in different background strains
- Non-reproducible or inconsistent results perhaps due to additional genetic modifiers and therefore unable to interpret data
- Have in mind sub-strain differences these also may change the phenotype
- When crossing different models consider the final genetic background of the desired model
- Give careful thought in using the right control

QUESTIONS